Discussion of QA Plan for DUNE/ SBND Cold Electronics

AUGUST 20TH, 2015

Outline

- Cold Electronics for SBND/DUNE
- Key Developments with Commonalities
- System Integration
 - MicroBooNE experience
 - SBND development
- FE/ADC Chip Production Plan
- Summary

Cold Electronics for SBND/DUNE

- SBND
 - 11,264 channels (sense wires)
 - 704 FE ASICs
 - 704 ADC ASICs
 - 88 cold FPGAs
 - 88 cold mother boards
 - 4 sets of cold cable
 - 4 sets of signal feed-through
 - 32 warm interface boards

- protoDUNE@CERN
 - 15,360 channels
 - 960 FE ASICs/960 ADC ASICs/ 120 cold FPGAs
 - 120 cold mother boards
 - 3 sets of cold cable
 - 3 sets of signal feed-through
- DUNE 10 kt
 - <u>384,000 channels</u>
 - 24,000 FE ASICs/24,000 ADC ASICs/6,000 COLDATA ASICs
 - 3,000 cold mother boards
 - 75 sets of cold cable
 - 75 sets of signal feed-through

Key Developments with Commonalities

- Key Developments
 - TPC electrode system (resistive cathode, field cage, sense wire planes)
 - Cold electronics
 - FE ASIC
 - ADC ASIC
 - Cold FPGA and/or COLDATA ASIC
 - Cold mother board, connections to sense wires
 - Cold cables
 - Signal feed-through
- A program should be established to build a full cold readout system, from TPC electrode to the signal feedthrough, for system tests of APA (at each step, following fabrication, transport and installation in the cryostat).

System Integration

- Each key component will have a dedicated test stand and QA plan
 - This includes ASICs, boards, cables, feed-throughs, etc.
 - This has been done before for both ATLAS (~10,000 boards, ~150 feed-throughs & cables) and MicroBooNE (~2,000 ASICs, ~500 boards, ~13 feed-throughs & cables)
- Emphasis should be put on the system integration
 - System integration is crucial to understand detector performance and finalize the design
 - Various integration tests have been done for both ATLAS (at BNL & CERN) and MicroBooNE (at BNL & Fermilab)
 - System integration, in both SBND and protoDUNE at CERN, will serve as crucial steps towards a successful construction of DUNE 10kton

Scale of Small LAr TPC Projects in SBN & DUNE

- MicroBooNE
 - *8,256 channels*
 - 516 FE ASICs
 - 50 cold mother boards
 - 11 sets of cold cable (269)
 - 11 sets of signal feed-through
 - 269 warm interface boards
 - 11 sets of warm cable (258)
 - 129 receiver & ADC boards

- 35 ton
 - **2,048** *channels*
 - 128 FE ASICs
 - 128 ADC ASICs
 - 16 cold FPGAs
 - 16 cold mother boards

Importance of System Integration

- 35T test has shown the efforts of cold electronics development were seriously *under*-estimated – especially the required manpower
 - On the contrary, the MicroBooNE cold electronics development has a larger scale but was delivered on time

Integration test should be planned at an early stage

- To bring all components together at Fermilab at the last moment and hope it will work together, is only a good wish ...
- In-kind contributions from various institutes are very important, but not the way to solve the problem
- Integration test stand should be developed and made available to other parts of the system, e.g. warm electronics, DAQ subsystem, etc.

Put serious efforts on cabling and FT development

- Important components for system design and integration
- Early prototype and system tests are necessary to avoid unexpected delay at later stage

- ASIC Test Stand
 - Individual test stand for each ASIC
 - All ASICs should be screening tested individually at RT
 - ASIC cold test board to verify the yield of ASIC operating in cold
 - This will help determine if all ASICs need to go through the cold test
- Cold Electronics Board Test Stand
 - Focus on board level evaluation test
 - Simple readout and DAQ system for easy debug test
 - Can be re-purposed to the dedicated debug test station once the system integration test stand becomes available

- System Integration Test Stand
 - Focus on system integration of various components
 - Complete system with golden setup can be used to test individual components, for both prototype production
 - Cold electronics board, cable, feed-through, warm interface board etc.
 - Multiple system integration test stands to serve different purposes

- System Integration Test Stand
 - SBND
 - Test stand at BNL will focus on the FE evaluation test
 - Test stand at Nevis will focus on the BE evaluation test
 - Test stand at FNAL will focus on the DAQ development and detector integration
 - protoDUNE & DUNE 10kt
 - Test stand at BNL will focus on the FE evaluation test
 - protoDUNE Test stand at CERN will focus on the BE evaluation test,
 DAQ development and detector integration
 - DUNE 10kt Test stand at FNAL will focus on the DAQ development and detector integration

- Integration test stands for SBND and protoDUNE are different
 - Cold electronics boards, cold cable, signal feed-through, warm interface electronics, DAQ hardware are different for SBND and protoDUNE
 - Development of integration test stands can share the experience and expertise of developers
 - Separate test stands for SBND and protoDUNE should be built and maintained
- ASIC test stands can be shared between SBND and protoDUNE
- It is possible to share the simple readout and DAQ system for cold electronics board test stand between SBND and protoDUNE

MicroBooNE Experience

 The following slides show what has been done for MicroBooNE

ASIC Incoming Test Stand

ASIC Incoming Test Stand

All FE ASICs are fully qualified before populated on the cold mother boards

ASIC Cryo Test Board

 Based on the test results of 201 ASICs in LN₂, it was decided not to continue the cold screening test on the rest of the chips; they will be tested cold, installed on the boards

MicroBooNE FEE Test Stand

Cold Test of FEE Test Stand

64 channels of signal chain response overlapped

Prototype 1 Integration Test Stand

Prototype 2 Integration Test Stand

Test stand at Nevis was later moved to FNAL for DAQ system development

SBND Development

 The following slides show what is being done for SBND ASIC test

Cold Electronics

ASIC Evaluation Test Stand

- Develop ASIC test boards to build the test stand for production test
- MicroBooNE FE ASIC production test took ~2 months
- SBND will have 2.7x ASICs
- Each test board has 4 ASIC sockets to speed up the chip test
- Clam-shell style of socket to ease the chip handling

Cold Electronics

FE ASIC Test Board

- DAC: TI 16-bit DAC8411 is used to inject test pulse
- ADC: Linear Tech 14-bit
 4.5Msps LTC2314 is used to digitize analog output signal
- Readout, DAQ, control and monitoring is through DUNE 35T FPGA mezzanine
 - No hardware development is necessary
- Layout design is finished and ready for fabrication

Cold Electronics

- ADC ASIC Test Board
 - DAC: TI 16-bit quad channel DAC3484
 - Readout, DAQ, control and monitoring is through an FPGA evaluation board
 - DUNE 35T FPGA mezzanine doesn't have enough I/O pins
 - Schematics design will start once the interface to the FPGA evaluation board is finalized

FE/ADC Chip Production Plan in FY17

- SBND and protoDUNE will need 2,000 FE ASICs and ~2,000 ADC ASICs
 - 704 for SBND + 960 for protoDUNE + 20% spares
- Two options (no overhead is included)
 - Option 1: MPW run with additional wafers
 - \$150k for FE ASIC and \$150k for ADC ASIC, total \$300k
 - ~\$50k for MPW run, 50 additional wafers (40 chips per wafer) @ ~\$2k each
 - Option 2: Dedicated run with additional wafers
 - ~\$250k for both FE and ADC ASICs
 - One mask for both FE and ADC ASICs
 - ~\$200k for mask of dedicated run, 25 additional wafers (180 FE + 180 ADC chips per wafer) @ \$2k each
 - Will get ~5,000 chips for each ASIC

FE/ADC Chip Production Plan for DUNE 10kt

- DUNE 10kt will need ~30,000 FE ASICs and ~30,000 ADC ASICs
 - 24,000 for DUNE + 20% spares
- Option is to have a dedicated run with additional wafers (no overhead is included)
 - ~\$550k for both FE and ADC ASICs
 - One mask for both FE and ADC ASICs
 - Assuming new mask for fine tuning of FE and ADC design based on protoDUNE results
 - ~\$200k for mask of dedicated run, 175 additional wafers (180 FE + 180 ADC chips per wafer) @ \$2k each
 - Will get ~32,000 chips for each ASIC

Contribution from Collaboration

- Collaboration efforts are important to bring up the integration test stand, perform QA test on production ASICs and boards
 - MicroBooNE has much stronger collaboration support compared to 35ton
- SBND and protoDUNE will need strong collaboration support as well for QA test of ASICs and boards
 - Collaborators are welcome to BNL/CERN/FNAL to perform production test
- DUNE 10kt will need better shared responsibility of QA test on production ASICs and boards
 - Multiple (3 ~ 5) production sites should be established for cold electronics production test
- Integration test stand should be maintained at major institutes (BNL/CERN/FNAL) for QA from protoDUNE though the last DUNE 10kt

Summary

- Key developments for LAr TPC projects share many commonalities in basic technical aspects
- We plan to build a full cold readout system, from TPC electrode to the signal feed-through, for system test of APA
 - QA procedure of individual components will be established along this development
 - Resources should be shared and optimized between SBND and DUNE
- System integration, in both SBND and protoDUNE at CERN, will serve as crucial steps toward a successful construction of DUNE
 - All experiments should benefit from both scientific and technical developments from each one of them